This paper offers a comprehensive treatment of the question as to whether a binary relation can be consistent (transitive) without being decisive (complete), or decisive without being consistent, or simultaneously inconsistent or indecisive, in the presence of a continuity hypothesis that is, in principle, non-testable. It identifies topological connectedness of the (choice) set over which the continuous binary relation is defined as being crucial to this question. Referring to the two-way relationship as the Eilenberg-Sonnenschein (ES) research program, it presents four synthetic, and complete, characterizations of connectedness, and its natural extensions; and two consequences that only stem from it. The six theorems are novel to both the economic and the mathematical literature: they generalize pioneering results of Eilenberg (1941), Sonnenschein (1965), Schmeidler (1971 and Sen (1969), and are relevant to several applied contexts, as well as to ongoing theoretical work.(140 words)Journal of Economic Literature Classification Numbers: C00, D00, D012010 Mathematics Subject Classification Numbers: 91B55, 37E05.