In this article, we delve into the realm of higher dimensional Leibniz-Rinehart algebras, exploring the intricate structures of Leibniz algebroids and their applications. By generalizing the concept of Lie algebroids and incorporating a Leibniz rule for the anchor map, the study sheds light on the fundamental principles underlying connections and underscores their significance. Through a comprehensive analysis of Leibniz-Rinehart algebras, this study paves the way for advancements and applications, offering a deeper understanding of the intricate relationship between algebraic and geometric structures.