This is a study of the dual space of continuous linear functionals on the function space Cps(X) with a natural norm inherited from a larger Banach space. Here ps denotes the pseudocompact-open topology on C(X), the set of all real-valued continuous functions on a Tychonoff space X. The lattice structure and completeness of this dual space have been studied. Since this dual space is inherently related to a space of measures, the measure-theoretic characterization of this dual space has been studied extensively. Due to this characterization, a special kind of topological space, called pz-space, has been studied. Finally the separability of this dual space has been studied.