Day 2 Tue, April 25, 2017 2017
DOI: 10.2118/188087-ms
|View full text |Cite
|
Sign up to set email alerts
|

Completion Optimization while Drilling – Geomechanical Steering towards Fracable Rock for Optimal Selection of Stage Spacing and Cluster Density in Unconventional Wells

Abstract: The drilling of thousands of unconventional horizontal wells in North America highlighted the impact of the landing zone on production, underscoring the importance of geosteering with the intention of staying in the most fracable rock. Unfortunately, the use of fast drilling motors combined with delayed logging tools, and insufficient data to quantify mechanical properties while drilling created multiple geosteering challenges. This paper describes a new technology that uses surface drilling data to estimate, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
3
2
1

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(2 citation statements)
references
References 17 publications
0
2
0
Order By: Relevance
“…Ouenes et al [2] introduced the use of surface drilling data to simultaneously estimate the rock geomechanical properties, pore pressure, stresses, porosity and natural fractures needed to guide the steering of horizontal wells within the most frackable rock in real time, and additionally provide a completion design for optimal hydraulic fracturing when drilling is finished. The Mechanical Specific Energy (MSE) [3] computed from commonly available surface drilling data such as torque (T), rate of penetration (ROP), weight-on-bit (WOB) and bit diameter (D) has been widely used to improve drilling efficiency.…”
Section: Newly Discovered Value In Surface Drilling Data and Mechanicmentioning
confidence: 99%
See 1 more Smart Citation
“…Ouenes et al [2] introduced the use of surface drilling data to simultaneously estimate the rock geomechanical properties, pore pressure, stresses, porosity and natural fractures needed to guide the steering of horizontal wells within the most frackable rock in real time, and additionally provide a completion design for optimal hydraulic fracturing when drilling is finished. The Mechanical Specific Energy (MSE) [3] computed from commonly available surface drilling data such as torque (T), rate of penetration (ROP), weight-on-bit (WOB) and bit diameter (D) has been widely used to improve drilling efficiency.…”
Section: Newly Discovered Value In Surface Drilling Data and Mechanicmentioning
confidence: 99%
“…When using a motor, the MSE requires the use of the formula given below in Eq. (2) where N is the rotational speed of the drill pipe, Kn is the mud motor speed to flow ratio and Q is the total mud flow rate.…”
Section: Newly Discovered Value In Surface Drilling Data and Mechanicmentioning
confidence: 99%