The author presents some results on nonlinear dynamics in optoelectronics nanostructures as lasers with quantum wells and quantum well solar cells using mathematical modeling and numerical simulations of the phenomena which take place in such kinds of structures. The nonlinear dynamics takes the complexity of the phenomena into account, which govern the field-substance interaction. Computational software was elaborated to study the nonlinear phenomena in such quantum devices, which put into evidence their complex nonlinear dynamics, characterized by bifurcation points and chaos, and the critical values of the parameters being determined. The mathematical modeling and numerical simulations for the quantum well solar cells for optimizing the values of their optical parameters (refraction index, reflectance, and absorption) were also analyzed, so that the conversion efficiency of the devices can be improved. Although in our study we have considered only rectangular quantum wells, the hybrid model allows computing the optimum values of the parameters whatsoever the form of the quantum wells. The developed numerical models and the obtained results are consistent with the existing data in the literature for the optoelectronics of quantum well structures, having important implications in the applications.