The phytoplankton-fish model for catching fish with impulsive feedback control is established in this paper. Firstly, the Poincaré map for the phytoplankton-fish model is defined, and the properties of monotonicity, continuity, differentiability, and fixed point of Poincaré map are analyzed. In particular, the continuous and discontinuous properties of Poincaré map under different conditions are discussed. Secondly, we conduct the analysis of the necessary and sufficient conditions for the existence, uniqueness, and global stability of the order-1 periodic solution of the phytoplankton-fish model and obtain the sufficient conditions for the existence of the order-kk≥2 periodic solution of the system. Numerical simulation shows the correctness of our results which show that phytoplankton and fish with the impulsive feedback control can live stably under certain conditions, and the results have certain reference value for the dynamic change of phytoplankton in aquatic ecosystems.