Fuzzy sets and fuzzy logics are used to model events with imprecise, incomplete, and uncertain information. Researchers have developed numerous methods and techniques to cope with fuzziness or uncertainty. This research intends to introduce the novel concepts of complex neutrosophic relations (CNRs) and its types based on the idea of complex neutrosophic sets (CNSs). In addition, these concepts are supported by suitable examples. A CNR discusses the quality of a relationship using the degree of membership, the degree of abstinence, and the degree of nonmembership. Each of these degrees is a complex number from the unit circle in a complex plane. The real part of complex-valued degrees represents the amplitude term, while the imaginary part represents the phase term. This property empowers CNRs to model multidimensional variables. Moreover, some interesting properties and useful results have also been proved. Furthermore, the practicality of the proposed concepts is verified by an application, which discusses the use of the proposed concepts in statistical decision-making. Additionally, a comparative analysis between the novel concepts of CNRs and the existing methods is carried out.