Coxsackievirus B3 (CVB3) infection is the most common cause of viral myocarditis. The pathogenesis of viral myocarditis is strongly controlled by host genetic factors. Although certain indispensable components of immunity have been identified, the genes and pathways underlying natural variation between individuals remain unclear. Previously, we isolated the viral myocarditis susceptibility 1 (Vms1) locus on chromosome 3, which influences pathogenesis. We hypothesized that confirmation and further study of Vms1 controlling CVB3-mediated pathology, combined with pathway analysis and consomic mapping approaches, would elucidate both pathological and protective mechanisms accounting for natural variation in response to CVB3 infection. Vms1 was originally mapped to chromosome 3 using a segregating cross between susceptible A/J and resistant B10.A mice. To validate Vms1, C57BL/6J-Chr 3A/NaJ (a chromosome substitution strain that carries a diploid A/J chromosome 3) were used to replicate susceptibility compared with resistant C57BL/6J (B6). A second segregating F2 cross was generated between these, confirming both the localization and effects of Vms1. Microarray analysis of the four strains (A/J, B10.A, C57BL/6J, and C57BL/6J-Chr 3A/NaJ) illuminated a core program of response to CVB3 in all strains that is comprised mainly of IFN-stimulated genes. Microarray analysis also revealed strain-specific differential expression programs and genes that may be prognostic or diagnostic of susceptibility to CVB3 infection. A combination of analyses revealed very strong evidence for the existence and location of Vms1. Differentially expressed pathways were identified by microarray, and candidate gene analysis revealed Fpgt, H28, and Tnni3k as likely candidates for Vms1.