The purpose of this paper is to present a new method to solve the decision-making algorithm based on the cosine similarity and distance measures by utilizing the uncertain and vague information. A complex interval-valued q-rung orthopair fuzzy set (CIVQROFS) is a reliable and competent technique for handling the uncertain information with the help of the complex-valued membership grades. To address the degree of discrimination between the pairs of the sets, cosine similarity measures (CSMs) and distance measures (DMs) are an accomplished technique. Driven by these, in this manuscript, we defined some CSMs and DMs for the pairs of CIVQROFSs and investigated their several properties. Choosing that the CSMs do not justify the axiom of the similarity measure (SM), then we investigate a technique to developing other CIVQROFSs-based SMs using the explored CSMs and Euclidean DMs, and it fulfills the axiom of the SMs. In addition, we find the cosine DMs (CDMs) by considering the inter-relationship between the SM and DMs; then, we have modified the procedure for the rank of partiality by similarity to the ideal solution method for the CDMs under investigation, which can deal with the associated decision-making problems not only individually from the argument of the opinion of geometry but also the fact of the opinion of algebra. Finally, we provide a numerical example to demonstrate the practicality and effectiveness of the proposed procedure, which is also in line with existing procedures. Graphical representations of the measures developed are also used in this manuscript.