Advances in ambient
ionization techniques have facilitated the
direct analysis of complex mixtures without sample preparation. Significant
attention has been given to innovating ionization methods so that
multiple options are now available, allowing for ready selection of
the best methods for particular analyte classes. These ambient techniques
are commonly implemented on benchtop systems, but their potential
application with miniature mass spectrometers for
in situ
measurements is even more powerful. These applications require that
attention be paid to tailoring the mass spectrometric methodology
for the on-site operation. In this study, combinations of scan modes
are employed to efficiently determine what tandem mass spectrometry
(MS/MS) operations are most useful for detecting sulfonamides using
a miniature ion trap after ionization. First, mixtures of representative
sulfonamide antibiotics were interrogated using a 2D MS/MS scan on
a benchtop ion trap in order to determine which class-specific fragments
(ionic or neutral) are shared between the sulfonamides and thus have
diagnostic value. Then, three less-used combination scans were recorded:
(i) a simultaneous precursor ion scan was used to detect both analytes
and an internal standard in a single ion injection event to optimize
quantitative performance; (ii) a simultaneous precursor/neutral loss
scan was used to improve detection limits; and finally, (iii) the
simultaneous precursor/neutral loss scan was implemented in a miniature
mass spectrometer and representative sulfonamides were detected at
concentrations as low as 100 ng/mL by nano-electrospray and 0.5 ng
absolute by paper spray ionization, although improvements in the stability
of the home-built instrumentation are needed to further optimize performance.