Abstract:We study the gravitational action induced by coupling two-dimensional nonconformal, massive matter to gravity on a Riemann surface with boundaries. A smallmass expansion gives back the Liouville action in the massless limit, while the first-order mass correction allows us to identify what should be the appropriate generalization of the Mabuchi action on a Riemann surface with boundaries. We provide a detailed study for the example of the cylinder. Contrary to the case of manifolds without boundary, we find that the gravitational Lagrangian explicitly depends on the space-point, via the geodesic distances to the boundaries, as well as on the modular parameter of the cylinder, through an elliptic θ-function.