2005
DOI: 10.1007/s10455-005-3897-y
|View full text |Cite
|
Sign up to set email alerts
|

Complex Product Structures and Affine Foliations

Abstract: A complex product structure on a manifold is an appropriate combination of a complex structure and a product structure. The existence of such a structure determines many interesting properties of the underlying manifold, notably that the manifold admits a pair of complementary foliations whose leaves carry affine structures. This is due to the existence of a unique torsionfree connection which preserves both the complex and the product structure; this connection is not necessarily flat. We study the existence … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
14
0
3

Year Published

2008
2008
2012
2012

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 9 publications
(17 citation statements)
references
References 24 publications
0
14
0
3
Order By: Relevance
“…Основные факты о геометрии пара-гиперкомплексных многообразий собра-ны в [22], где также рассмотрены некоторые примеры.…”
Section: скобка куранта в пространстве сечений γ(T (M )) определяетсяunclassified
See 2 more Smart Citations
“…Основные факты о геометрии пара-гиперкомплексных многообразий собра-ны в [22], где также рассмотрены некоторые примеры.…”
Section: скобка куранта в пространстве сечений γ(T (M )) определяетсяunclassified
“…В [22]- [26] дано много других интересных примеров ле-воинвариантных гиперсимплектических структур на разрешимых группах Ли. Все такие структуры на 4-мерных группах Ли классифицированы в [24].…”
Section: специальные пара-кэлеровы многообразия Ttunclassified
See 1 more Smart Citation
“…Here n is half the dimension of g. If z = z + + z − , with z ± ∈ g ± , then X can be considered as the matrix associated to the endomorphism ( Proof. It has been proved in [1] that Ric is skew-symmetric and that the following relation holds for any x, y ∈ g:…”
Section: Complex Product Structures On Nilpotent Lie Algebrasmentioning
confidence: 99%
“…for any x + , y + ∈ g + , x − , y − ∈ g − , where π ± : g → g ± are the projections (see [1,4]). First, let us state a general result on the torsion-free connection associated to a complex product structure {J, E}, when the product structure E is replaced by another product structure in {cos θ E + sin θ F : θ ∈ [0, 2π)}.…”
Section: Associated Torsion-free Connectionsmentioning
confidence: 99%