Reefscape architecture, shaped by dominant coral morphologies, can play a major role in determining the structure and composition of fish assemblages by affecting niche and resource availability and mediating interspecific interactions. To explore the role of dominant coral morphologies on reef fish communities, we carried out a comparative study of the fish community associated with a Massive Coral Community (MCC) and a Branching Coral Community (BCC) at Gorgona island, Tropical Eastern Pacific (TEP). On each community, the benthic substrate was assessed through the "chain transect method" while the fish assemblage was evaluated through visual surveys on belt transects. We found differences between both fish assemblages in terms of the abundance, diversity (H'), and evenness (J'). The BCC, despite being formed by morphologically complex pocilloporid colonies, had a simple and relatively flat architecture that attracted principally small and territorial fishes. Significant higher abundances of Chromis atrilobata and Thalassoma lucasanum at the BCC boosted the total fish abundance but caused low fish evenness and diversity. Conversely the MCC, composed of massive coral species with considerable sizes and diversity of shapes, held a complex and high-relief reefscape capable of sustaining a more diverse and even fish community, although with the same species richness as the BCC. Fishes with large sizes, roving behavior and piscivore-feeding preferences were especially attracted to the MCC. Although, massive coral species are important in determining a diverse and complex reefscape architecture, both dominant coral morphologies (massive and branching) attract and provide resources to different types of fish according to their size, mobility and trophic group. Our results suggest that a loss of massive coral species and a community shift towards stress-resistant taxa (such as Pocillopora spp.), could alter the structure and function of fish assemblages in the TEP due to the habitat loss for large, mobile and piscivore species. Rev. Biol. Trop. 62 (Suppl. 1): 343-357. Epub 2014 February 01.