Mineral dust composition affects a multitude of processes in the atmosphere and adjacent compartments. Dust dry deposition was collected near source in northwest Africa, in Central Asia, and on Svalbard and at three locations of the African outflow regime. Samples were subjected to automated scanning electron microscopy with energy-dispersive X-ray analysis to obtain size and composition of 216,000 individual particles. Results show low temporal variation in estimated optical properties for each location, but considerable differences between the African, Central Asian, and Arctic regimes. No significant difference was found between the K-feldspar relative abundances, indicating comparable related ice-nucleation abilities. The mixing state between calcium and iron compounds was different for near source and transport regimes, potentially in part due to size sorting effects. As a result, in certain situations (high acid availability, limited time) atmospheric processing of the dust is expected to lead to less increased iron solubility for near-source dusts (in particular for Central Asian ones) than for transported ones (in particular of Sahelian origin).Atmosphere 2020, 11, 269 2 of 16 Dust composition also affects the marine and terrestrial biosphere by supplying nutrients, but also supplying substances with adverse health effects [20]. Tropical as well as extra-tropical ecosystems apparently rely in part on atmospheric inputs [21,22]. Ocean surface waters can be depleted in essential nutrients supplied by the dust [23,24], thus composition plays an important role [25,26].Several of these effects are not only affected by the overall composition, but also by the distribution of the compounds between the particles (i.e., internal or external mixing). For example, optical properties are strongly dependent on the mixing state [27,28]. In addition, chemical processes might be considerably affected by the particle mixing state [29].Consequently, a more detailed knowledge of dust composition is expected to yield a better understanding and increased model quality. Information on bulk aerosol is available with respect to different properties (e.g., [6,7,30,31]) and finds its way into models [32]. In contrast, detailed properties like the aerosol mixing state are generally not yet regarded, probably due to scarcity of this information.In the present study, dust from different transport regimes-African near-source and outflow, Central Asian near-source, and a high-latitude source-is analyzed to provide information on its composition and variation. With respect to the importance of the mixing state, a single particle attempt was chosen. A particular focus of this study is the distribution of iron amongst individual particles, and its internal mixture with calcium compounds, as the iron compounds are of high interest for different processes. These processes include radiation absorption, photocatalytic reactions, and ocean fertilization.