The controlled synthesis of isomeric organoplatinum clamshell dimers [Pt(2)Me(2)(μ(2)-κ(3)-6-dppd)(2)](2+), 6-dppd = 1,4-di-2-pyridyl-5,6,7,8,9,10-hexahydrocycloocta[d]pyridazine, is reported. The new complexes are formed selectively by self-assembly from mononuclear precursors, taking advantage of the slow cis-trans isomerization at platinum(II). Thus reaction of endo-[PtClMe(κ(2)-6-dppd)] with AgOTf gave endo,endo-[Pt(2)Me(2)(μ(2)-κ(3)-6-dppd)(2)](2+), while the reaction of [PtMe(2)(κ(2)-6-dppd)] with HOTf in solvent S = Me(2)C=O or MeCN gave first a mixture of exo- and endo-[PtMe(S)(κ(2)-6-dppd)](+) and then, by loss of solvent, a mixture of exo,exo- and endo,endo-[Pt(2)Me(2)(μ(2)-κ(3)-6-dppd)(2)](2+). The endo,endo isomer slowly isomerized to the more stable exo,exo isomer in solution. Reaction of PPh(3) with endo-[PtClMe(κ(2)-6-dppd)] gave a mixture of endo- and exo-[PtMe(PPh(3))(κ(2)-6-dppd)](+) but reaction with exo,exo-[Pt(2)Me(2)(μ(2)-κ(3)-6-dppd)(2)](2+) gave exo-[PtMe(PPh(3))(κ(2)-6-dppd)](+) selectively, with retention of stereochemistry. The structures of the clamshell dimers and of key precursors are reported and equilibria are studied both experimentally and by DFT calculations.