IMPORTANCE Social and economic costs of depression are exacerbated by prolonged periods spent identifying treatments that would be effective for a particular patient. Thus, a tool that reliably predicts an individual patient's response to treatment could significantly reduce the burden of depression. OBJECTIVE To estimate how accurately an outcome of escitalopram treatment can be predicted from electroencephalographic (EEG) data on patients with depression. DESIGN, SETTING, AND PARTICIPANTS This prognostic study used a support vector machine classifier to predict treatment outcome using data from the first Canadian Biomarker Integration Network in Depression (CAN-BIND-1) study. The CAN-BIND-1 study comprised 180 patients (aged 18-60 years) diagnosed with major depressive disorder who had completed 8 weeks of treatment. Of this group, 122 patients had EEG data recorded before the treatment; 115 also had EEG data recorded after the first 2 weeks of treatment. INTERVENTIONS All participants completed 8 weeks of open-label escitalopram (10-20 mg) treatment. MAIN OUTCOMES AND MEASURES The ability of EEG data to predict treatment outcome, measured as accuracy, specificity, and sensitivity of the classifier at baseline and after the first 2 weeks of treatment. The treatment outcome was defined in terms of change in symptom severity, measured by the Montgomery-Åsberg Depression Rating Scale, before and after 8 weeks of treatment. A patient was designated as a responder if the Montgomery-Åsberg Depression Rating Scale score decreased by at least 50% during the 8 weeks and as a nonresponder if the score decrease was less than 50%. RESULTS Of the 122 participants who completed a baseline EEG recording (mean [SD] age, 36.3 [12.7] years; 76 [62.3%] female), the classifier was able to identify responders with an estimated accuracy of 79.2% (sensitivity, 67.3%; specificity, 91.0%) when using only the baseline EEG data. For a subset of 115 participants who had additional EEG data recorded after the first 2 weeks of treatment, use of these data increased the accuracy to 82.4% (sensitivity, 79.2%; specificity, 85.5%). CONCLUSIONS AND RELEVANCE These findings demonstrate the potential utility of EEG as a treatment planning tool for escitalopram therapy. Further development of the classification tools presented in this study holds the promise of expediting the search for optimal treatment for each patient.