We propose a linear programming method that is based on active-set changes and proximal-point iterations. The method solves a sequence of least-distance problems using a warm-started quadratic programming solver that can reuse internal matrix factorizations from the previously solved least-distance problem. We show that the proposed method terminates in a finite number of iterations and that it outperforms state-of-the-art LP solvers in scenarios where an extensive number of small/medium scale LPs need to be solved rapidly, occurring in, for example, multi-parametric programming algorithms. In particular, we show how the proposed method can accelerate operations such as redundancy removal, computation of Chebyshev centers and solving linear feasibility problems.