In a planar L-drawing of a directed graph (digraph) each edge e is represented as a polyline composed of a vertical segment starting at the tail of e and a horizontal segment ending at the head of e. Distinct edges may overlap, but not cross. Our main focus is on bimodal graphs, i.e., digraphs admitting a planar embedding in which the incoming and outgoing edges around each vertex are contiguous. We show that every plane bimodal graph without 2-cycles admits a planar L-drawing. This includes the class of upward-plane graphs. Finally, outerplanar digraphs admit a planar L-drawing -although they do not always have a bimodal embedding -but not necessarily with an outerplanar embedding.