Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Nanoparticle (NP)-based drug delivery systems hold immense potential for targeted therapy and diagnosis of neurological disorders, overcoming the limitations of conventional treatment modalities. This review explores the design considerations and functionalization strategies of NPs for precise targeting of the brain and central nervous system. This review discusses the challenges associated with drug delivery to the brain, including the blood-brain barrier and the complex heterogeneity of traumatic brain injury. We also examine the physicochemical properties of NPs, emphasizing the role of size, shape, and surface characteristics in their interactions with biological barriers and cellular uptake mechanisms. The review concludes by exploring the options of targeting ligands designed to augment NP affinity and retention to specific brain regions or cell types. Various targeting ligands are discussed for their ability to mimic receptor-ligand interaction, and brain-specific extracellular matrix components. Strategies to mimic viral mechanisms to increase uptake are discussed. Finally, the emergence of antibody, antibody fragments, and antibody mimicking peptides are discussed as promising targeting strategies. By integrating insights from these scientific fields, this review provides an understanding of NP-based targeting strategies for personalized medicine approaches to neurological disorders. The design considerations discussed here pave the way for the development of NP platforms with enhanced therapeutic efficacy and minimized off-target effects, ultimately advancing the field of neural engineering.
Nanoparticle (NP)-based drug delivery systems hold immense potential for targeted therapy and diagnosis of neurological disorders, overcoming the limitations of conventional treatment modalities. This review explores the design considerations and functionalization strategies of NPs for precise targeting of the brain and central nervous system. This review discusses the challenges associated with drug delivery to the brain, including the blood-brain barrier and the complex heterogeneity of traumatic brain injury. We also examine the physicochemical properties of NPs, emphasizing the role of size, shape, and surface characteristics in their interactions with biological barriers and cellular uptake mechanisms. The review concludes by exploring the options of targeting ligands designed to augment NP affinity and retention to specific brain regions or cell types. Various targeting ligands are discussed for their ability to mimic receptor-ligand interaction, and brain-specific extracellular matrix components. Strategies to mimic viral mechanisms to increase uptake are discussed. Finally, the emergence of antibody, antibody fragments, and antibody mimicking peptides are discussed as promising targeting strategies. By integrating insights from these scientific fields, this review provides an understanding of NP-based targeting strategies for personalized medicine approaches to neurological disorders. The design considerations discussed here pave the way for the development of NP platforms with enhanced therapeutic efficacy and minimized off-target effects, ultimately advancing the field of neural engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.