Pumped storage power plants, using reversible pumpturbines, are a great solution to maintain the stability of an electrical network. The continuous operating area of reversible pump-turbines machines is usually delimited by cavitation or a hydraulic instability called hump phenomena at part load. If the machine operates under these off-design conditions, it might be exposed to vibrations and performance losses.The paper focuses on the numerical analysis of the pumping mode regime and pays special attention to the prediction of the hump shaped characteristic curve and associated rotating stall. The investigations were made on a high head pump-turbine design (nq=27) at model scale for four different guide vane opening angles and a wide range of flow rates. Numerical simulations were performed and analyzed in LEGI and were compared to the global experimental data, provided by Alstom Hydro.