“…Wu et al (2018) and Zechel et al (2019) discounted predicted transition probabilities to states in collision with other agents. Muench and Gavrila (2019) decomposed the interactive planning problem into two policies with the corresponding Q-functions: one for prediction in static environment, and another for interaction prediction in an obstacle-free environment. Many deep learning methods consider interactions between participants: explicitly modeling interacting entities (Alahi et al, 2016; Amirian et al, 2019; Bartoli et al, 2018; Choi et al, 2019; Eiffert and Sukkarieh, 2019; Fernando et al, 2018, 2019; Gupta et al, 2018; Hasan et al, 2018; Huang et al, 2019; Ivanovic and Pavone, 2019; Kosaraju et al, 2019; Pei et al, 2019; Pfeiffer et al, 2018; Radwan et al, 2018; Rhinehart et al, 2019; Sadeghian et al, 2019; Saleh et al, 2019; Shi et al, 2019; Su et al, 2017; van der Heiden et al, 2019; Varshneya and Srinivasaraghavan, 2017; Vemula et al, 2018; Xu et al, 2018; Xue et al, 2018; Zhao et al, 2019), implicitly as a result of pixel-wise prediction (Walker et al, 2014), or by learning a joint motion policy (Lee et al, 2017; Ma et al, 2017; Shalev-Shwartz et al, 2016; Zhan et al, 2018).…”