The impact of hurricanes is so devastating throughout different levels of society that there is a pressing need to provide a range of users with accurate and timely information that can enable effective planning for and response to potential hurricane landfalls. The Weather Research and Forecasting (WRF) code is the latest numerical model that has been adopted by meteorological services worldwide. The current version of WRF has not been designed to scale out of a single organization's local computing resources. However, the high resource requirements of WRF for fine-resolution and ensemble forecasting demand a large number of computing nodes, which typically cannot be found within one organization. Therefore, there is a pressing need for the Grid-enablement of the WRF code such that it can utilize resources available in partner organizations. In this paper, we present our research on Grid enablement of WRF by leveraging our work in transparent shaping, GRID superscalar, profiling, code inspection, code modeling, meta-scheduling, and job flow management.