The objective of this study is to perform a comparative analysis of the impact of incorporating alkaline earth metal carbonates (MCO3, where M–Mg, Ca, Sr, Ba) into low-calcium fly ash (FA) on the geopolymerization processes and the resultant properties of composite geopolymers. Mechanical activation was employed to enhance the reactivity of the mixtures. The reactivity of the mechanically activated (FA + alkaline earth carbonate) blends towards NaOH solution was experimentally studied using XRD analysis and FTIR spectroscopy. In agreement with thermodynamic calculations, MgCO3 demonstrated the most active interaction with the alkaline solution, whereas strontium and barium carbonates exhibited little to no chemical interaction, and calcite was situated in the transition region. As the calcite content in the mixture with FA increased, the compressive strength of the geopolymers continuously improved. The addition of Mg, Sr, and Ba carbonates to the FA did not enhance the strength of geopolymers. However, the strength of geopolymers based on these blends was comparable with that of geopolymers based on 100% FA. The strength of geopolymers synthesized from the 100% FA and from the (90% FA + 10% MCO3) blends, mechanically activated for 180 s, at the age of 180 days was 11.0 MPa (0% carbonate), 11.1 MPa (10% MgCO3), 36.5 MPa (10% CaCO3), 13.6 MPa (10% SrCO3), and 12.4 MPa (10% BaCO3) MPa, respectively. The influence of carbonate additives on the properties of the composite geopolymers was examined, highlighting filler, dilution, and chemical effects. The latter determined the unique position of calcite among the carbonates of alkaline earth metals.