This paper presents a pioneering study on numerical modeling of load bearing characteristics of the jacket foundation pile for offshore wind turbines on the west coast of Taiwan. Because Taiwan is located in an earthquake prone area, there is significant interest in improving the prediction of the behavior of wind turbine jacket foundations subjected to seismic loading. Investigation of the bearing capacity of the jacket foundation pile for the offshore wind farm using effective stress analysis, with consideration of pore pressure generation and soil/liquid coupled analysis, was conducted. A new procedure to evaluate the design of offshore wind turbine foundation piles in the sand and clay inter-layered soil was also proposed. Static and dynamic analyses of bearing capacity of the jacket foundation pile were conducted. Results obtained demonstrate that the design process for the jacket foundation pile proposed in this study can properly reflect the interaction behavior of the foundation and the soil. In addition, the pore pressure generation model can be used to simulate soil liquefaction. The proposed method is also very useful in the evaluation of the design capabilities of offshore wind turbine jacket foundations.