and component manufacturing costs, which are driven by the fact that PEMFCs require specialized component materials due to the highly acidic operating environment. To alleviate these costs, anion exchange membrane fuel cells (AEMFCs) have recently emerged as an alternative to PEMFCs. The higher pH operating environment offers several advantages such as lower material and manufacturing costs. For example, AEMFCs can use platinum group metal (PGM) free cathodes, have more facile oxygen reduction kinetics, [3,4] and may enable a wider range of fuels (e.g., methanol, hydrazine). However, early AEMFC developments suffered from very low overall performance and durability. [5,6] From a durability perspective, cells were mostly believed to be limited by chemical degradation of the anion exchange membrane (AEM) and ionomer at high pH. Because of this, there has been a significant amount of investment targeting the design and manufacturing of stable AEMs and ionomers. As a result, several AEMs have been shown to be stable both at elevated temperature (≥80 °C) and pH for hundreds or even thousands of hours during ex situ testing. [7-11] Another issue that has started to be addressed in the AEMFC literature is water management. Water is formed at the AEMFC hydrogen anode and consumed at the oxygen cathode. As water is produced at the anode, it must be removed to avoid flooding-either through the anode gas stream or, preferably, through the AEM to the cathode (via backdiffusion) where it is needed to react. [12] If too little water is supplied to the cathode by back-diffusion it can dry out; if more water arrives to the cathode than can be reacted, it is also possible for the cathode to flood. Therefore, there is a need for both the anode and cathode catalyst layers to be able to passively transport water. The ability of the ionomer in the catalyst layer to facilitate such ion transport is related to the overall hydrophilicity of the monomers used in the polymer membranes and ionomer. One example where ionomer water uptake has been limiting is the well-known ethylene-tetrafluoroethylene copolymer (ETFE) based powder ionomer. [13] Though the ion exchange capacity (IEC) of that material is modest (only 1.24 meq g −1), The primary function of the ionomers that are incorporated into fuel cell electrode catalyst layers is to provide pathways for ion transport between the catalyst active sites and the electrolyte. This is influenced by many variables, including the ion-exchange capacity, water uptake, and molecular weight. In anion exchange membrane fuel cells (AEMFCs), controlling ionomer water uptake is particularly important and tailoring this property in each electrode is an important consideration when looking to maximize cell performance. In this study, three poly(norbornene) tetrablock copolymer ionomers with a range of physical properties are synthesized and incorporated into AEMFC anode and cathode electrodes. Systematic electrode engineering with these ionomers allows the peak power density to be increased by 100% (1.6 W ...