Platinum (Pt) is one of the interesting catalysts in metal-assisted etching (metal-assisted chemical etching) of silicon (Si). The Pt-assisted etching induces not only the dissolution of Si under the Pt catalysts but also the formation of mesoporous layer on the Si surface away from them. In this work, we etched n-Si and p-Si by using patterned Pt films with a diameter of 5 μm and an interval of 50 μm. For both cases, the Si surface under the Pt catalysts was selectively etched and macropores with a diameter of 5 μm were formed. The macropores formed on n-Si were deeper than those formed on p-Si. The mesoporous layer was observed only around the macropores on n-Si, while it was observed over the entire surface of p-Si. We also measured the open circuit potential of Si in the etching solution. The positive shift of potential of n-Si by the Pt deposition was smaller than that of p-Si except for the initial stage of etching, which can be explained by the polarization characteristics. We discussed the etching behavior of n-Si and p-Si on the basis of the results of structure observation and electrochemical measurements.