Due to ecological requirements, the bypass-ratio of future civil turbofan engines will be increased. This leads to ultra-high bypass ratio (UHBR) engines, which bring in new challenges concerning the blade material, structural integration, and aeroelastic behaviour of the fan. The ambition of the project Composite fan Aerodynamic, Aeroelastic, and Aeroacoustic Validation Rig (CA3ViAR) is to design and test an open-test-case fan that experiences instability mechanisms, which are representative for UHBR fans of civil aircrafts. The optical measurement technique Digital Image Correlation (DIC) allows for the spatial measurement of deformations. The aim is to apply this technique to measure rotor blade deformation under loading and its vibration due to aeroelastic phenomena to get a better understanding of the structural and aeroelastic behaviour of the composite fan. However, the high rotational speeds, blade vibration frequencies, and expected amplitudes pose challenges for the measurement setup. In this work, a high-speed DIC system is prepared and tested to measure deformation and vibration of a fast rotating blade. Additionally, the requirements for the DIC setup are defined and presented. The expected blade tip speeds in the CA3ViAR project are up to 295 m/s and the blade frequencies of interest up to 650 Hz. Therefore, particular emphasis must be given to the setup in order to eliminate motion blur due to the rotation and to achieve the required frequency. This leads to a setup with synchronised high-speed cameras and a laser to measure frequency vibrations up to 1 kHz with an exposure time below 210 ns. Test measurements are conducted on a stationary beam and an axial blower with a max. blade tip speed of 50 m/s. A data analysis method is developed and described to eliminate the rigid body rotation, analyse the deformation of each blade compared to a reference condition, and analyse the spatial vibration in the frequency domain for a high number of data points per time step. The results of the structural beam are in agreement with the reference measurements and numerical simulations. By analysing the spatial vibration modes of the axial blower, the 1F-flap mode is identified at 38 Hz. In conclusion, this DIC setup shows promising results for future deformation and vibration measurements on a scaled UHBR fan.