This chapter reviews our results on the morphology, tribological, and local mechanical property investigations of new copoly(urethane-imide)s (coPUIs) and nanocomposites based thereof using atomic force microscopy (AFM) and nanoindentation (NI) methods. AFM in the contact mode of lateral forces revealed the presence of different contrast phases on the surface of synthesized films which depends on the chemical structure of monomers used. Single-walled carbon nanotubes (SWCNTs), carbon nanofibers, graphene, tungsten disulfide and tungsten diselenide were introduced into coPUI matrices. Dependencies of microhardness and modulus of elasticity on the depth of indentation have been obtained. It was found that for each synthesized coPUI, there is only one type of carbon nanomaterials that exerts the greatest influence on their characteristics. The improvement of mechanical properties is found to mainly depend on the nature of the polymer matrix and filler. Our results showed that effective methods for improving of tribological characteristics can be either modification by SWCNTs (up to 1 wt.%) or heating at 30°C. Synthesized coPUI films and nanocomposites are very promising materials and can be used as thermoplastic elastomers for tribological applications, and their physical-mechanical properties can be controlled both by temperature and by mechanical action.