This work reports on the separation of cenospheres from lignite fly ash through a wet separation process-the sink-float method. A better quality of cenospheres could be achieved through a physical–chemical approach using an acetone–water mixture as a medium. This work aimed to elucidate the correlation between the structure, morphology, and composition and medium fraction variables, with data for the freshly prepared and the reused mixtures presented for comparison. The work covers a study of the macrocomponent composition of an Fe2O3–SiO2–Al2O3 system, highlighting the pair dependences of SiO2–Al2O3, Al2O3–Fe2O3, and SiO2/Al2O3–Al2O3 and revealing an interesting result in terms of geochemical characteristics categorizing the collected cenosphere fractions separated from high-calcium class C fly ash produced from a lignite coal power plant in Thailand (as magnetic cenospheres). The CaO and SO3 contents increased monotonically with increased water content, particularly for the CaO composition profile, which was found to be similar to the increased carbonate concentration measured from the mixtures after use. The physicochemical properties in terms of the self-association ability of the acetone–water mixing phase is believed to have played an important role in determining the intermolecular interactions and reactivity of ions in the liquid phase, consequently affecting the separation efficiency, recovery yield, and quality of cenospheres.