Articles you may be interested inMorphology and structure evolution of Cu(In,Ga)S2 films deposited by reactive magnetron co-sputtering with electron cyclotron resonance plasma assistance Transition from ferromagnetism to diamagnetism in undoped ZnO thin films Appl. Phys. Lett. 95, 033104 (2009); 10.1063/1.3180708 Pulsed laser deposition of ferromagnetic Zn 0.95 Co 0.05 O thin films Appl. Phys. Lett. 93, 152509 (2008);Transition metal disulfides crystallizing in the pyrite structure (e.g., TMS 2 , with TM ¼ Fe, Co, Ni, and Cu) are a class of materials that display a remarkably diverse array of functional properties. These properties include highly spin-polarized ferromagnetism (in Co 1Àx Fe x S 2 ), superconductivity (in CuS 2 ), an antiferromagnetic Mott insulating ground state (in NiS 2 ), and semiconduction with close to optimal parameters for solar absorber applications (in FeS 2 ). Exploitation of these properties in heterostructured devices requires the development of reliable and reproducible methods for the deposition of high quality pyrite structure thin films. In this manuscript, we report on the suitability of reactive sputter deposition from metallic targets in an Ar/H 2 S environment as a method to achieve exactly this. Optimization of deposition temperature, Ar/H 2 S pressure ratio, and total working gas pressure, assisted by plasma optical emission spectroscopy, reveals significant windows over which deposition of single-phase, polycrystalline, low roughness pyrite films can be achieved. This is illustrated for the test cases of the ferromagnetic metal CoS 2 and the diamagnetic semiconductor FeS 2 , for which detailed magnetic and transport characterization are provided. The results indicate significant improvements over alternative deposition techniques such as ex situ sulfidation of metal films, opening up exciting possibilities for all-sulfide heterostructured devices. In particular, in the FeS 2 case it is suggested that fine-tuning of the sputtering conditions provides a potential means to manipulate doping levels and conduction mechanisms, critical issues in solar cell applications. Parenthetically, we note that conditions for synthesis of phase-pure monosulfides and thiospinels are also identified. V C 2012 American Institute of Physics. [http://dx.