“…-Associative algebras, Shirshov [207], Bokut [22], Bergman [11]; -Associative algebras over a commutative algebra, Mikhalev and Zolotykh [170]; -Associative -algebras, where is a group, Bokut and Shum [59]; -Lie algebras, Shirshov [207]; -Lie algebras over a commutative algebra, Bokut et al [31]; -Lie p-algebras over k with char k = p, Mikhalev [166]; -Lie superalgebras, Mikhalev [165,167]; -Metabelian Lie algebras, Chen and Chen [75]; -Quiver (path) algebras, Farkas et al [101]; -Tensor products of associative algebras, Bokut et al [30]; -Associative differential algebras, Chen et al [76]; -Associative (n−)conformal algebras over k with char k = 0, Bokut et al [45], Bokut et al [43]; -Dialgebras, Bokut et al [38]; -Pre-Lie (Vinberg-Koszul-Gerstenhaber, right (left) symmetric) algebras, Bokut et al. [35], -Associative Rota-Baxter algebras over k with char k = 0, Bokut et al [32]; -L-algebras, Bokut et al [33]; -Associative -algebras, Bokut et al [41]; -Associative differential -algebras, Qiu and Chen [185]; --algebras, Bokut et al [33]; -Differential Rota-Baxter commutative associative algebras, Guo et al [111]; -Semirings, Bokut et al [40]; -Modules over an associative algebra, Golod [108], Green [109], Kang and Lee [123,124], Chibrikov [90]; -Small categories, Bokut et al [36]; -Non-associative algebras, Shirshov [206]; -Non-associative algebras over a commutative algebra, Chen et al [81]; -Commutative non-associative algebras, Shirshov [206]; -Anti-commutative non-associative al...…”