It was previously shown by Barzdin and Podnieks that one does not increase the power of learning programs for functions by allowing learning algorithms to converge to a finite set of correct programs instead of requiring them to converge to a single correct program. In this paper we define some new, subtle, but natural concepts of mind change complexity for function learning and show that, if one bounds this complexity for learning algorithms, then, by contrast with Barzdin and Podnieks result, there are interesting and sometimes complicated tradeoffs between these complexity bounds, bounds on the number of final correct programs, and learning power.