Kidney diseases still pose one of the biggest challenges for global health, and their heterogeneity and often high comorbidity load seriously hinders the unraveling of their underlying pathomechanisms and the delivery of optimal patient care. Metabolomics, the quantitative study of small organic compounds, called metabolites, in a biological specimen, is gaining more and more importance in nephrology research. Conducting a metabolomics study in human kidney disease cohorts, however, requires thorough knowledge about the key workflow steps: study planning, sample collection, metabolomics data acquisition and preprocessing, statistical/bioinformatics data analysis, and results interpretation within a biomedical context. This review provides a guide for future metabolomics studies in human kidney disease cohorts. We will offer an overview of important a priori considerations for metabolomics cohort studies, available analytical as well as statistical/bioinformatics data analysis techniques, and subsequent interpretation of metabolic findings. We will further point out potential research questions for metabolomics studies in the context of kidney diseases and summarize the main results and data availability of important studies already conducted in this field.