2021
DOI: 10.3390/math9192477
|View full text |Cite
|
Sign up to set email alerts
|

Compositional Data Modeling through Dirichlet Innovations

Abstract: The Dirichlet distribution is a well-known candidate in modeling compositional data sets. However, in the presence of outliers, the Dirichlet distribution fails to model such data sets, making other model extensions necessary. In this paper, the Kummer–Dirichlet distribution and the gamma distribution are coupled, using the beta-generating technique. This development results in the proposal of the Kummer–Dirichlet gamma distribution, which presents greater flexibility in modeling compositional data sets. Some … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 22 publications
0
0
0
Order By: Relevance