International audienceIn component-based safety-critical real-time systems it is crucial to determine which com-ponent(s) caused the violation of a required system-level safety property, be it to issue a precise alert, or to determine liability of component providers. In this paper we present an approach for blaming in real-time systems whose component specifications are given as timed automata. The analysis is based on a single execution trace violating a safety property P. We formalize blaming using counterfactual reasoning ("what would have been the outcome if component C had behaved correctly?") to distinguish component failures that actually con-tributed to the outcome from failures that had no impact on the violation of P. We then show how to effectively implement blaming by reducing it to a model-checking problem for timed automata, and demonstrate the feasibility of our approach on the models of a pacemaker and of a chemical reactor