Interspeech 2016 2016
DOI: 10.21437/interspeech.2016-1239
|View full text |Cite
|
Sign up to set email alerts
|

Compositional Neural Network Language Models for Agglutinative Languages

Abstract: Continuous space language models (CSLMs) have been proven to be successful in speech recognition. With proper training of the word embeddings, words that are semantically or syntactically related are expected to be mapped to nearby locations in the continuous space. In agglutinative languages, words are made up of concatenation of stems and suffixes and, as a result, compositional modeling is important. However, when trained on word tokens, CSLMs do not explicitly consider this structure. In this paper, we exp… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2017
2017
2020
2020

Publication Types

Select...
3
3
1

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 20 publications
0
2
0
1
Order By: Relevance
“…Özellikle uzun ve zamana bağlı bilgilerin modellemesindeki zorlukları çözebilmek için Uzun Kısa Süreli Bellek (LSTM: Long Short Term Memory) Hochreiter ve Schmidhuber tarafından önerilmiştir [25]. Arısoy ve Saraçlar LSTM yapısını Türkçe yayın haberlerinin transkripsiyonu için kullanmış ve tekrarlayan sinir ağlarını kullanarak bir ASR sistemi geliştirmiştir [26].…”
Section: Literatür Taraması (Literature Review)unclassified
“…Özellikle uzun ve zamana bağlı bilgilerin modellemesindeki zorlukları çözebilmek için Uzun Kısa Süreli Bellek (LSTM: Long Short Term Memory) Hochreiter ve Schmidhuber tarafından önerilmiştir [25]. Arısoy ve Saraçlar LSTM yapısını Türkçe yayın haberlerinin transkripsiyonu için kullanmış ve tekrarlayan sinir ağlarını kullanarak bir ASR sistemi geliştirmiştir [26].…”
Section: Literatür Taraması (Literature Review)unclassified
“…The purposed system is trained by Turkish News TV program recordings and Law lecture video recordings. In [14], DNN is also used for building acoustic model. In [15], GMM and DNN based models are trained and tested using the corpus which is developed in [16].…”
Section: Introductionmentioning
confidence: 99%
“…In [17], vowel harmony rule in Turkish is incorporated to SR. In [18], long shortterm memory (LSTM) and compositional LSTM recurrent neural networks are used for Turkish broadcast news transcription task. In [19], a speaker independent and phone based continuous time digit sequence recognition system was designed.…”
Section: Introductionmentioning
confidence: 99%