Compositional variable selection in quantile regression for microbiome data with false discovery rate control
Runze Li,
Jin Mu,
Songshan Yang
et al.
Abstract:Advancement in high‐throughput sequencing technologies has stimulated intensive research interests to identify specific microbial taxa that are associated with disease conditions. Such knowledge is invaluable both from the perspective of understanding biology and from the biomedical perspective of therapeutic development, as the microbiome is inherently modifiable. Despite availability of massive data, analysis of microbiome compositional data remains difficult. The nature that relative abundances of all compo… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.