Quantification of soil plasticity is usually based on Atterberg limits or indices, which are then used for engineering and agricultural purposes on clay soils. Because these limits/indices are seldom analyzed during routine soil surveys, they are sometimes estimated from available soil properties using pedotransfer functions (PTFs). Main aim of this study was to test if two robust PTFs, previously created by other authors for other soils/areas, may be used for predicting plasticity of typical clay soils on fluvial deposits in Croatia. We analyzed mineralogy, plasticity, and related physicochemical properties of four representative soil profiles along Sava and Drava, two longest Croatian rivers. Particle size distribution patterns pointed to more uniform sedimentation along Sava, compared to Drava. Also, more clay was found within Sava profiles. Soil texture was finer farther away from the sources of both rivers. Soil cation exchange capacity (CEC) was almost fully positively correlated to clay content. On the other hand, C org content showed no correlation to CEC. This is attributed to the significant presence of smectite across all studied soils. Clay was recognized as the main factor influencing soil plasticity. When compared to the measured values, the predicted values of plasticity index and liquid limit were heavily underestimated. Hence, region-specific PTFs should be developed for more accurate prediction of plasticity in these soils. According to the WRB-2015, the soils were classified as Eutric Reductigleyic Stagnic Gleysols (Clayic, Humic, Protovertic). Because soils were not dry during field description, shrink-swell cracks were not prominent, and therefore soils were not classified as Vertisols. We suggest that field criteria for classification of Vertisols should not depend on actual soil moisture. Instead, plastic limits/indices could be used.