Compound exocytosis is found in many cell types and is the major form of regulated secretion in acinar and mast cells. Its key characteristic is the homotypic fusion of secretory granules. These then secrete their combined output through a single fusion pore to the outside. The control of compound exocytosis remains poorly understood. Although soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) such as syntaxin 2, SNAP23 (synaptosome-associated protein of 23 kDa), and SNAP25 have been suggested to play a role, none has been proven. Vesicle-associated membrane protein 8 (VAMP8) is a SNARE first associated with endocytic processes but more recently has been suggested as an R-SNARE in regulated exocytosis. Secretion in acinar cells is reduced when VAMP8 function is inhibited and is less in VAMP8 knock-out mice. Based on electron microscopy experiments, it was suggested that VAMP8 may be involved in compound exocytosis. Here we have tested the hypothesis that VAMP8 controls homotypic granule-to-granule fusion during sequential compound exocytosis. We use a new assay to distinguish primary fusion events (fusion with the cell membrane) from secondary fusion events (granule-granule fusion). Our data show the pancreatic acinar cells from VAMP8 knock-out animals have a specific reduction in secondary granule fusion but that primary granule fusion is unaffected. Furthermore, immunoprecipitation experiments show syntaxin 2 association with VAMP2, whereas syntaxin 3 associates with VAMP8. Taken together our data indicate that granule-to-granule fusion is regulated by VAMP8 containing SNARE complexes distinct from those that regulate primary granule fusion.The precise role of compound exocytosis has not been determined, but it is thought that it might enhance secretion by enabling fusion of, and release of contents from, granules that lie deeper within the cell (1). For example, in the case of the massive exocytosis observed during mast cell degranulation (2), compound exocytosis would ensure that secretion occurs both through fusion of granules close to the plasma membrane and from deeper lying granules. This avoids the need to transport deeper granules up to the cell membrane and so would accelerate the secretory response.In the case of acinar cells the apical plasma membrane area is relatively small compared with the total membrane area and is defined by tight junctional boundaries (3). Regulated exocytosis occurs exclusively at the apical membrane. Secretory (zymogen) granules are tightly packed in the apical region of acinar cells (see Fig. 1) and do not move over the minute timescales we use for stimulation. This means that only a few granules have direct access to the apical plasma membrane. Furthermore, granule fusion is so slow (many minutes) that close granules would limit access of deeper-lying granules to docking sites at the plasma membrane. Compound exocytosis provides a mechanism to enhance secretion by enabling deeper granules to fuse with peripheral granules and so release their c...