The complex stability constant (log β) and the free iron concentration (pM) are used to compare the relative strength of iron binding by siderophores. Direct measurements of these thermodynamic parameters are often not possible for siderophores due to very large log β values ranging from 30 to 50. Instead, siderophore iron(III)-binding constants are determined by competitive experiments with other strong chelators with known values, such as EDTA. Iron(III) binding constants of water-insoluble siderophores, such as the mycobactins produced by the mycobacterium family, have never been directly measured. Since mycobactins contain two hydroxamic acid binding motifs, their log β values have been assumed to be comparable to those of other hydroxamate-based siderophores like desferrioxamine B, at ~ 30. However, exochelin MN, another mycobacterial siderophore that contains two hydroxamic acid moieties, has a log β of 39.1 and a pM of 31.1, which makes it among the strongest siderophores known. We have found that mycobactin J, the amphiphilic siderophore of Mycobacterium paratuberculosis, can remove iron(III) from TrenCAM (log β = 43.6) within 1 min in methanol. This surprising result indicates that log β for mycobactin J is ~ 43 and the ligand exchange kinetics in methanol is fast. The results imply that mycobactins are capable of removing iron quickly from very strongly binding siderophores in a cellular milieu. We propose a model mechanism for iron acquisition by pathogenic mycobacteria in vivo. This model explains how the host iron captured by siderophores can be returned to the invading pathogen even in the absence of active uptake mechanisms.