Background
Hepatocellular carcinoma (HCC) is a common gastrointestinal malignancy with a high incidence and poor prognosis. The subunits of the integrator complex (INTS1-14) play a crucial role in regulating genes dependent on RNA Polymerase II, which may be associated with cancer. However, the role of INTSs in HCC remains unclear. This study aims to comprehensively analyze the clinical value and potential role of INTS family genes in HCC through systematic bioinformatics analysis.
Methods
We employed various public databases, including UALCAN, HPA, Kaplan–Meier Plotter, GEPIA2, TNMplot, STRING, TIMER, and TISIDB, to investigate the expression levels, clinicopathological correlations, diagnostic and prognostic value, genetic alterations, co-expression network, molecular targets, and immune infiltration of INTSs in HCC. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to investigate the biological functions of genes associated with INTSs. Furthermore, Western blot, real-time fluorescence quantitative reverse transcription polymerase chain reaction (RT-qPCR), and immunohistochemistry techniques were employed to assess the expression of relevant proteins and genes. The proliferation of HCC cells was evaluated using the CCK8 assay.
Results
We found that in HCC, there was a significant upregulation of INTSs at the transcriptional level, particularly INTS1, INTS4, INTS7, and INTS8. Additionally, the protein levels of INTS1 and INTS8 were notably elevated. The overexpression of these INTSs was strongly correlated with tumor stages in HCC patients. INTS1, INTS4, INTS7, and INTS8 exhibited significant diagnostic and prognostic value in HCC. Moreover, their expression was associated with immune infiltrations and activated status, including B cells, CD8 + T cells, CD4 + T cells, NK cells, macrophages, and dendritic cells. Functional predictions indicated that INTS1, INTS4, INTS7, and INTS8 were involved in various cancer-related signaling pathways, such as TRAIL, IFN-gamma, mTOR, CDC42, Apoptosis, and the p53 pathway. Furthermore, we observed a significant upregulation of INTS1, INTS4, INTS7, and INTS8 expression in HCC cell lines compared to normal liver cell lines. The level of INTS1 protein was higher in cancerous tissues compared to adjacent non-cancerous tissues (n = 16), and the suppression of INTS1 resulted in a significant decrease in the proliferation of Huh7 cells.
Conclusion
These findings indicate the potential of INTS family genes as diagnostic biomarkers and therapeutic targets in HCC. Further research is needed to understand the underlying mechanisms and explore clinical applications.