Nowadays, multipath transmission scheme in heterogeneous vehicular networks has become an emerging topic. It is a great challenge to overcome the unreliability of heterogeneous wireless network in vehicle-to-ground multipath communication. Many multipath transmission schemes were proposed. However, most schemes do not consider the unreliability of wireless networks and are difficult to deploy in vehicle-to-ground communications. Even though part of the multipath transmission schemes consider the unreliability of wireless networks, their overhead is too large to be deployed in vehicle-to-ground multipath communication. Therefore, we propose a BigNum Network Coding (BNNC) scheme for vehicleto-ground multipath communication. Compared with the Opportunistic Routing (OR) scheme, BNNC's network resource overhead is smaller. Compared with other network coding schemes, it is a better tradeoff between coding flexibility and codec efficiency. In this paper, we propose a brand-new mathematical model for network coding which can effectively improve the reliability of the vehicular networks. Secondly, based on the mathematical model, we design BNNC multipath transmission scheme. Compared with the current network coding scheme, the BNNC scheme considers coding flexibility and codec efficiency while ensuring multipath transmission reliability. Thirdly, we compare BNNC scheme with many current multipath transmission schemes through lots of simulations and real tests. The results show that the BNNC scheme is significantly superior to the other network coding schemes in terms of computational performance. And in terms of the network performance, the BNNC scheme can overcome the unreliability of wireless networks in multipath transmission and it has lower overhead than OR scheme. INDEX TERMS Vehicular networks, multipath transmission, reliability, network coding. I. INTRODUCTION Vehicle-to-ground communication is an important part of the Vehicular Networks [1], [2]. As more devices are added to support greater automation, and multimedia systems entertain us and provide vision, therefore the vehicle-to-ground communication is coming under increasing pressure [3]. The associate editor coordinating the review of this manuscript and approving it for publication was Junhui Zhao. Providing a high performance and reliable vehicle-to-ground communication network for on-board users and devices is a challenging task [4]-[6]. Studies have shown that the use of heterogeneous wireless networks between vehicles and ground can establish a high performance and reliable vehicle-to-ground communication network [7], [8]. Early studies such as Information Raining [9], MAR [10], and these studies focused on how to access heterogeneous networks. In recent years, studies have