Industrial ecology is an advanced form and ideal model of modern industrial development, in which the industrial ecosystem is the core. Based on the PSR model, this paper builds a comprehensive evaluation index system for urban industrial ecosystem development and selects 14 prefecture-level cities in Liaoning Province of the traditional industrial area in Northeastern China as cases to calculate the development level of its industrial ecosystem during 2000–2018 using an improved Topsis method and then to conduct a spatial visualization analysis. Finally, based on the “stress-state-response” subsystem, this paper diagnoses the constraints for industrial ecosystem development, which can provide a reference basis for decision-making in industrial ecology of traditional industrial area represented by those in Northeast China. The results show the following: (1) From 2000 to 2018, the industrial ecology of the 14 cities in Liaoning Province was at a medium level. Except for Shenyang and Dalian with the rapid development, the difference of industrial ecosystem development for other cities was relatively small. (2) From 2000 to 2018, the industrial ecosystem development of each city was in a status of “either increasing, or decreasing, or fluctuating,” which generally raised first and then decreased. Regarding spatial difference, the development exhibited a “center-periphery” pattern, with Shenyang and Dalian as the “dual-core” that were increasingly strengthened with significantly high-level industrial ecology. (3) At system level, PSR constraint grades for the industrial ecosystem development in the 14 cities of Liaoning Province were different. Constraint grades in the pressure subsystem, the state subsystem, and the response subsystem for the industrial ecosystem of Liaoning were 45.73%, 20.01%, and 34.34%, respectively, indicating that the lack of human response to the ecological environment and the pressure of human activities on the ecological environment during the industrial economy development were the main constraints affecting the process of industrial ecology in these cities. (4) Due to the differences in geographical environments, economic bases, industrial structures, and local development contexts, the major constraint factors of industrial ecosystem development in different cities are significantly different and complicated; however, there are five factors that are generally considered as major constraint factors in all cities, i.e., regional GDP, number of labor force employed in the secondary industrial sector, gross investment in fixed assets, amount of industrial sulfur dioxide removal, and production value from “three-wastes” comprehensive utilization. At last, this paper puts forward some recommendations and suggestions for providing scientific support for industrial ecosystem construction in the traditional industrial area of Northeastern China.