2020
DOI: 10.1016/j.artmed.2019.101789
|View full text |Cite
|
Sign up to set email alerts
|

Comprehensive electrocardiographic diagnosis based on deep learning

Abstract: Cardiovascular disease (CVD) is the leading cause of death worldwide, and coronary artery disease (CAD) is a major contributor. Early-stage CAD can progress if undiagnosed and left untreated, leading to myocardial infarction (MI) that may induce irreversible heart muscle damage, resulting in heart chamber remodeling and eventual congestive heart failure (CHF). Electrocardiography (ECG) signals can be useful to detect established MI, and may also be helpful for early diagnosis of CAD. For the latter especially,… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
90
2
3

Year Published

2020
2020
2023
2023

Publication Types

Select...
6
2
1

Relationship

1
8

Authors

Journals

citations
Cited by 175 publications
(95 citation statements)
references
References 50 publications
0
90
2
3
Order By: Relevance
“…The reported accuracy for the automated detection of normal and MI ECG beatsby using CNN was 96.1%. Lih et al [93] proposed combined 16-layer CNN and Long Short-Term Memory (LSTM) models for the detection of MI with automatic feature extraction and selection. The reported accuracy was 98%.…”
Section: Discussionmentioning
confidence: 99%
“…The reported accuracy for the automated detection of normal and MI ECG beatsby using CNN was 96.1%. Lih et al [93] proposed combined 16-layer CNN and Long Short-Term Memory (LSTM) models for the detection of MI with automatic feature extraction and selection. The reported accuracy was 98%.…”
Section: Discussionmentioning
confidence: 99%
“…However, there is no rule on this issue yet. In this study, the dataset was randomly split for stratified 10fold cross validation which was used in many deep and conventional machine learning based bioimage and biosignal studies [29]. CNN and MLP models were trained from scratch starting with random weights using NVIDIA DGX-1 with NVIDIA Tesla V100 GPUs at Abdullah Gül University, High Performance Computing (HPC) Laboratory.…”
Section: Data Splitting and Trainingmentioning
confidence: 99%
“…Методы ГО являются базовой платформой для приложений распознавания изображений, которые планируются или уже используются для визуализации: ангиография, ЭхоКГ, компьютерная томография, внутрисосудистое ультразвуковое исследование, оптическая когерентная томография и др. [3,5,51]. Наиболее распространенными вариантами ГО являются сверточные (CNN) и рекуррентные нейронные сети (RNN) [51].…”
Section: автоматизированные системы и публичные наборы данныхunclassified
“…[3,5,51]. Наиболее распространенными вариантами ГО являются сверточные (CNN) и рекуррентные нейронные сети (RNN) [51]. В 2016г была впервые опубликована статья, в которой представлены результаты применения CNN для автоматической верификации патологических признаков ЭКГ [52].…”
Section: автоматизированные системы и публичные наборы данныхunclassified