“…Several researchers have studied aspects of droplet behavior relevant to steelmaking including, decarburization, [1][2][3][4][5][6] droplet generation, [7][8][9][10][11][12][13][14][15][16] size distribution, [17,18] and residence time. [19] Other workers have developed models [20][21][22][23] and conducted plant trials, [24][25][26][27][28] which considered the role of droplets in the overall process kinetics. Previous work in the authors' laboratory [6] showed that droplet swelling, caused by CO formation inside the droplet, increased the droplet residence time in the slag, thereby favoring decarburization.…”