A current big challenge for developed or developing countries is how to keep large-scale transportation infrastructure networks operational under all conditions. Network extensions and budgetary constraints for maintenance purposes are among the main factors that make transportation network management a non-trivial task. On the other hand, the high number of parameters affecting the stability condition of engineered slopes makes their assessment even more complex and difficult to accomplish. Aiming to help achieve the more efficient management of such an important element of modern society, a first attempt at the development of a classification system for rock and soil cuttings, as well as embankments based on visual features, was made in this paper using soft computing algorithms. The achieved results, although interesting, nevertheless have some important limitations to their successful use as auxiliary tools for transportation network management tasks. Accordingly, we carried out new experiments through the combination of modern optimization and soft computing algorithms. Thus, one of the main challenges to overcome is related to the selection of the best set of input features for a feedforward neural network for earthwork hazard category (EHC) identification. We applied a genetic algorithm (GA) for this purpose. Another challenging task is related to the asymmetric distribution of the data (since typically good conditions are much more common than bad ones). To address this question, three training sampling approaches were explored: no resampling, the synthetic minority oversampling technique (SMOTE), and oversampling. Some relevant observations were taken from the optimization process, namely, the identification of which variables are more frequently selected for EHC identification. After finding the most efficient models, a detailed sensitivity analysis was applied over the selected models, allowing us to measure the relative importance of each attribute in EHC identification.