Epidemiological and experimental studies indicate that maternal exposure to environmental pollutants impairs the cognitive and motor functions of offspring in humans and laboratory animals. Infant ultrasonic vocalizations (USVs), the communicative behavior of pups toward caregivers, are impaired in rodent models of neurodevelopmental disorders, suggesting a useful method to evaluate the developmental neurotoxicity of environmental pollutants. Therefore, we investigated USVs emitted by mouse pups of dams exposed to 2-chloro-3,7,8-tribromodibenzofuran (TeXDF) and 1,2,3,7,8-pentabromodibenzofuran (PeBDF), which are detected in the actual environment. The USV duration and number in the pups born to dams administered with TeXDF 40 μg/kg body weight (b.w.), but not 8 μg/kg b.w., on gestational day (GD) 12.5, were significantly lower than those in the corresponding pups on postnatal days 3–9. Conversely, there was no statistical change in the USVs emitted by the pups of dams administered with PeBDF 35 or 175 μg/kg b.w. on GD 12.5. To examine whether maternal exposure leads to behavioral impairments in adulthood, we analyzed exploratory behaviors in a novel environment using IntelliCage, a fully automated testing apparatus for group-housed mice. Neither TeXDF nor PeBDF exposure induced significant differences in offspring exploration. Considered together, our findings revealed that TeXDF induces atypical USV emission in infant mice, suggesting the importance of further studies on the risk assessment of mixed brominated/chlorinated dibenzo-p-dioxins and dibenzofurans.