Most typical distribution networks are unbalanced due to unequal loading on each of the three phases and untransposed lines. In this paper, models and methods which can handle three-phase unbalanced scenarios are developed. The authors present a novel three-phase home energy management system to control both active and reactive power to provide per-phase optimization. Simplified single-phase algorithms are not sufficient to capture all the complexities a three-phase unbalance system poses. Distributed generators such as photo-voltaic systems, wind generators, and loads such as household electric and thermal demand connected to these networks directly depend on external factors such as weather, ambient temperature, and irradiation. They are also time dependent, containing daily, weekly, and seasonal cycles. Economic and phase-balanced operation of such generators and loads is very important to improve energy efficiency and maximize benefit while respecting consumer needs. Since homes and buildings are expected to consume a large share of electrical energy of a country, they are the ideal candidate to help solve these issues. The method developed will include typical distributed generation, loads, and various smart home models which were constructed using realistic models representing typical homes in Austria. A control scheme is provided which uses model predictive control with multi-objective mixed-integer quadratic programming to maximize self-consumption, user comfort and grid support.