Miniaturized mass spectrometry (MMS) is optimal for a wide variety of applications that benefit from field-portable instrumentation. Like MMS, field asymmetric ion mobility spectrometry (FAIMS) has proven capable of providing in situ analysis, allowing researchers to bring the lab to the sample. FAIMS compliments MMS very well, but has the added benefit of operating at atmospheric pressure, unlike MS. This distinct advantage makes FAIMS uniquely suited for portability.
Since its inception, FAIMS has been envisioned as a field-portable device, as it affords less expense and greater simplicity than many similar methods. Ideally, these are simple, robust devices that may be operated by non-professional personnel, yet still provide adequate data when in the field. While reducing the size and complexity tends to bring with it a loss of performance and accuracy, this is made up for by the incredibly high throughput and overall convenience of the instrument. Moreover, the FAIMS device used in the field can be brought back to the lab, and coupled to a conventional mass spectrometer to provide any necessary method development and compound validation.
This work discusses the various considerations, uses, and applications for portable FAIMS instrumentation, and how the future of each applicable field may benefit from the development and acceptance of such a device.