It is challenging to detect and track frequency hopping spread spectrum (FHSS) signals due to their wideband frequencies and the limitations of current hardware. In the implementation, there has been a trend of conducting compressive sensing for blind signal processing of FHSS signals. The modulated wideband converter (MWC) is a type of sub-Nyquist sampling system, which accomplishes the recovery of highly accurate broadband sparse signals by multichannel sub-Nyquist sampling sequences. However, it is difficult to adjust MWC to FHSS signals, because the support set and sparsity change with the hop. In this paper, we propose a channelized MWC scheme in order to solve these problems. First, the proposed method distributes the sub-bands to different channels. We can derive and refresh the frequency support set rapidly without recovery. Secondly, by reconstructing the low-pass filter and decimation, we reduced the computational cost to 1/m as the traditional m-channel MWC scheme, where m is the number of channels. Moreover, we propose a series of strategies to estimate carrier frequency. The numerical simulations show that our method can detect the channel, which contains FHSS signals in the case of a low signal-to-noise ratio. Furthermore, the estimation method leads to the successful estimation of the FHSS carrier frequency. This indicates that our method is also effective in the broadband non-cooperative spectrum sensing.